

 Version 1.0.0

 Presented by Fairyproof

 Feburary 19, 2021

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the Fildaio project, at
the request of the Fildaio team.

The audited code can be found in three public Github repositories:

the Fildaio's CandyDispenser Github repository, and the version used for this report is commit
45fa502e849c6a7d2ec754c733127372bc0c41cb ,

the Fildaio's AssetManager Github repository, and the version used for this report is commit
85b08f23a19b9a02fce0c4bd44423ea7f41ff106 and

the Fildaio's Quicksilver Github repository, and the version used for this report is commit
9aecf2e1edb18eaecc8f39c705975414f3388d17 .

The goal of this audit is to review Fildaio’s solidity implementation for a lending application, study potential
security vulnerabilities, its general design and architecture, and uncover bugs that could compromise the
software in production.

We make observations on specific areas of the code that present concrete problems, as well as general
observations that traverse the entire codebase horizontally, which could improve its quality as a whole.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current understanding of
known security patterns and state of the art regarding smart contract security. You agree that your access
and/or use, including but not limited to any associated services, products, protocols, platforms, content,
and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming language, or
other programming aspects that could present security risks. Risks or issues introduced by using data feeds
from offchain sources are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and further
testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in connection with
this report, its content, and the related services and products and your use thereof, including, without
limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service advertised or
offered by a third party through the product, any open source or third-party software, code, libraries,
materials, or information linked to, called by, referenced by or accessible through the report, its content,
and the related services and products, any hyperlinked websites, any websites or mobile applications
appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any
transaction between you and any third-party providers of products or services.

af://n18
https://filda.io/
https://github.com/fildaio/CandyDispenser
https://github.com/fildaio/AssetManager
https://github.com/fildaio/Quicksilver
af://n30

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING
ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
Fildaio’s codebase was studied in detail in order to acquire a clear impression of how the its specifications
were implemented. The codebase was then subject to deep analysis and scrutiny, resulting in a series of
observations. The problems and their potential solutions are discussed in this document and, whenever
possible, we identify common sources for such problems and comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Fairyproof to make sure we
understand the size, scope, and functionality of the project's smart contracts.
ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to
identify potential vulnerabilities.
iii. Comparison to specification, which is the process of checking whether the code does what the
specifications, sources, and instructions provided to Fairyproof describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually
covering the code and how much code is exercised when we run the test cases.
ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a
program to execute.

3. Best practices review, which is a review of the smart contracts to improve maintainability, security, and
control based on the established industry and academic practices, recommendations, and research.

— Structure of the document
This report contains a list of issues and comments on all the contract files under the directories https://gith
ub.com/fildaio/CandyDispenser, https://github.com/fildaio/AssetManager and https://github.com/fildaio/Qu
icksilver. Each issue is assigned a severity level based on the potential impact of the issue and
recommendations to fix it, if applicable. For ease of navigation, an index by topic and another by severity
are both provided at the beginning of the report.

— Documentation
For this audit, we used the following sources of truth about how the Fildaio system should work:

https://docs.filda.io/

https://www.yuque.com/cheyenne-i6vw0/xq2fzw

These were considered the specification, and when discrepancies arose with the actual code behavior, we
consulted with the Fildaio team or reported an issue.

af://n38
af://n49
https://github.com/fildaio/CandyDispenser
https://github.com/fildaio/AssetManager
https://github.com/fildaio/Quicksilver
af://n52
https://docs.filda.io/
https://www.yuque.com/cheyenne-i6vw0/xq2fzw
af://n59

— Comments from Auditee
No vulnerabilities with critical or medium severities were found in the Fildaio's codebase. Two vulnerability
with high severity were fixed by the team. Four vulnerabilities with low severity were acknowledged by the
team, and the team doesn't think they will trigger issues or risks and may make changes in future upgrades.

The Fildaio's codebase passed the audit performed by the Fairyproof team.

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security audits
for organizations. Fairyproof has developed industry security standards for designing and deploying smart
contract systems.

03. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at
some point in the future.

04. List of issues by severity

af://n59
af://n66
af://n72
af://n86
af://n88

A. Critical

- N/A

B. High

- CandyDispenser/tree/main/contracts/AirDropPool.sol

Logic Error

- AssetManager/tree/main/contracts/Governable.sol

Risky Shared Slot

C. Medium

- N/A

D. Low

- CandyDispenser/tree/main/contracts/AirDropPool.sol

Unsafe Function Call

- CandyDispenser/tree/main/contracts/BlackList.sol

Missing Address Check

- CandyDispenser/tree/main/contracts/PoolManager.sol

Missing Address Check

- AssetManager/tree/main/contracts/PoolHandler.sol

Missing Address Check

05. List of issues by contract file

af://n88
af://n89
af://n91
af://n92
af://n95
af://n98
af://n99
af://n101
af://n102
af://n105
af://n108
af://n111
af://n116

- CandyDispenser/tree/main/contracts/AirDropPool.sol
Logic Error: High

Unsafe Function Call: Low

- CandyDispenser/tree/main/contracts/BlackList.sol
Missing Address Check: Low

- CandyDispenser/tree/main/contracts/PoolManager.sol
Missing Address Check: Low

- AssetManager/tree/main/contracts/PoolHandler.sol
Missing Address Check: Low

- AssetManager/tree/main/contracts/Governable.sol
Risky Shared Slot: High

06. Issue descriptions and recommendations
by contract file

- CandyDispenser/tree/main/contracts/AirDropPool.sol

Logic Error: High

Source and Description:

Line 382: the function earned gets a wrong calculation value in certain circumstances, thus causing the
function getReward in line 390 to be exploited by allowing unauthorized users to claim rewards.

Recommendation:

Consider changing the order of the conditional checks in the function earned .

af://n118
af://n122
af://n125
af://n128
af://n131
af://n136
af://n138
af://n139

Update: Fixed in c2fd3da3f5e5be973d3658ecf0ff218120068c66 by the team adopting the recommended
change.

Unsafe Function Call: Low

Source and Description:

Line 402: the function notifyRewardAmount calls different functions to transfer tokens in different
circumstances. It is possible that after the function notifyRewardAmount is called multiple times the
variable totalSupply is calculated incorrectly by taking an incorrect input (e.g. when the actual reward is
greater than 0 it is incorrectly assigned a value equal to 0, thus causing the variable totalSupply
incorrectly calculated)

Recommendation:

Consider uniformly using safeTransferFrom to transfer tokens in all circumstances and adding a check
require(reward > 0) .

Update: Acknowledged by the Fildaio team. The team doesn't think this will cause potential issues or risks
and therefore prefers to keep it for now, and may make a change in a future upgrade.

- CandyDispenser/tree/main/contracts/BlackList.sol

Missing Address Check: Low

Source and Description:

Lines 11 and 15: neither the function addToBlackList nor the function addToBlackList checks the
parameter _target , thus causing a zero address which is invalid for the function call can be used to call the
function.

Recommendation:

Consider adding a check require(_target != address(0)) for both functions.

Update: Acknowledged by the Fildaio team. At the time of writing the team stated that this function would
no longer be called, therefore the team doesn't think it will cause any issues or risks thus preferring to keep
it for now, and may make a change in a future upgrade.

- CandyDispenser/tree/main/contracts/PoolManager.sol

Missing Address Check: Low

Source and Description:

Line 26: the function register doesn't check its parameter pool , thus causing a zero address which is
invalid for the function call can be registered.

https://github.com/fildaio/CandyDispenser/commit/c2fd3da3f5e5be973d3658ecf0ff218120068c66
af://n147
af://n155
af://n156
af://n164
af://n165

Recommendation:

Consider adding a check require(pool != address(0)) before the statement require(!exist(pool),
"aready exist!"); .

Update: Acknowledged by the Fildaio team. At the time of writing the team stated that this function would
no longer be called, therefore the team doesn't think it will cause any issues or risks thus preferring to keep
it for now, and may make a change in a future upgrade.

- AssetManager/tree/main/contracts/PoolHandler.sol

Missing Address Check: Low

Source and Description:

Line 33: the function register doesn't check its parameter pool , thus causing a zero address which is
invalid can be registered.

Recommendation:

Consider adding a check require(pool != address(0)) before the statement require(!exist(pool),
"aready exist!"); .

Update: Acknowledged by the Fildaio team. The team doesn't think this will cause potential issues or risks
and therefore prefers to keep it for now, and may make a change in a future upgrade.

- AssetManager/tree/main/contracts/Governable.sol

Risky Shared Slot: High

Source and Description:

This contract is inherited by the HandlerProxy contract as a proxy contract. The contract defines an
address variable governance in line 5 but doesn't specify a slot for this variable, thus causing its
implementation contracts sharing slot 0 with it and causing the variable governance to be modified
unexpectedly.

Recommendation:

Consider specifying a slot for the variable governance .

Update: Fixed in 63c0767ab1dda45156d4ed7f96213e7d8db6c58f by the team removing this contract file,
adding a contract file GovernableInitiable.sol and making changes accordingly in the HandlerProxy
contract.

af://n173
af://n174
af://n182
af://n183
https://github.com/fildaio/AssetManager/commit/63c0767ab1dda45156d4ed7f96213e7d8db6c58f

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditee

	02. About Fairyproof
	03. Severity level reference
	04. List of issues by severity
	A. Critical
	- N/A

	B. High
	- CandyDispenser/tree/main/contracts/AirDropPool.sol
	- AssetManager/tree/main/contracts/Governable.sol

	C. Medium
	- N/A

	D. Low
	- CandyDispenser/tree/main/contracts/AirDropPool.sol
	- CandyDispenser/tree/main/contracts/BlackList.sol
	- CandyDispenser/tree/main/contracts/PoolManager.sol
	- AssetManager/tree/main/contracts/PoolHandler.sol

	05. List of issues by contract file
	- CandyDispenser/tree/main/contracts/AirDropPool.sol
	- CandyDispenser/tree/main/contracts/BlackList.sol
	- CandyDispenser/tree/main/contracts/PoolManager.sol
	- AssetManager/tree/main/contracts/PoolHandler.sol
	- AssetManager/tree/main/contracts/Governable.sol

	06. Issue descriptions and recommendations by contract file
	- CandyDispenser/tree/main/contracts/AirDropPool.sol
	Logic Error: High
	Unsafe Function Call: Low

	- CandyDispenser/tree/main/contracts/BlackList.sol
	Missing Address Check: Low

	- CandyDispenser/tree/main/contracts/PoolManager.sol
	Missing Address Check: Low

	- AssetManager/tree/main/contracts/PoolHandler.sol
	Missing Address Check: Low

	- AssetManager/tree/main/contracts/Governable.sol
	Risky Shared Slot: High

