
Public

SMART CONTRACT AUDIT REPORT

for

FilDA Protocol

Prepared By: Yiqun Chen

PeckShield
December 2, 2021

1/23 PeckShield Audit Report #: 2021-392

contact@peckshield.com

Public

Document Properties

Client FilDA
Title Smart Contract Audit Report
Target FilDA
Version 1.0
Author Xuxian Jiang
Auditors Jing Wang, Yiqun Chen, Xuxian Jiang
Reviewed by Yiqun Chen
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 December 2, 2021 Xuxian Jiang Final Release
1.0-rc1 November 29, 2021 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Yiqun Chen
Phone +86 183 5897 7782
Email contact@peckshield.com

2/23 PeckShield Audit Report #: 2021-392

Public

Contents

1 Introduction 4
1.1 About FilDA . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 6

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Uninitialized State Index DoS From Reward Activation 12
3.2 Improved Logic of QsSushiLPDelegate::doTransferIn() 15
3.3 Proper stSushiPerShare Accounting in WMiniChefV2 16
3.4 Accommodation of Non-ERC20-Compliant Tokens 18
3.5 Trust Issue of Admin Keys . 20

4 Conclusion 22

References 23

3/23 PeckShield Audit Report #: 2021-392

Public

1 | Introduction

Given the opportunity to review the FilDA design document and related smart contract source code,
we outline in the report our systematic approach to evaluate potential security issues in the smart
contract implementation, expose possible semantic inconsistencies between smart contract code and
design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About FilDA

FilDA is a lending and borrowing protocol with the goal of developing a cross-chain money market.
The protocol designs are architected and inspired based on Compound and Alpha HomoraV2 and synced
into the FilDA platform to capitalize the benefits of both systems. FilDA enables users to utilize
their cryptocurrencies by supplying collateral to the protocol that may be borrowed by staking over-
collateralized cryptocurrencies. It has been launched on HECO and will be deployed on Ethereum and
other public chains.

The basic information of FilDA is as follows:

Table 1.1: Basic Information of FilDA

Item Description
Name FilDA

Website https://www.filda.io/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report December 2, 2021

In the following, we show the Git repositories of reviewed files and the commit hash values used
in this audit.

4/23 PeckShield Audit Report #: 2021-392

https://www.filda.io/

Public

• https://github.com/fildaio/compound-protocol.git (d8a2351)

• https://github.com/fildaio/alpha-homora-v2-contract.git (7d1686e)

And here are the commit IDs after all fixes for the issues found in the audit have been checked
in:

• https://github.com/fildaio/compound-protocol.git (a81306d)

• https://github.com/fildaio/alpha-homora-v2-contract.git (4faa6f5)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

5/23 PeckShield Audit Report #: 2021-392

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered

6/23 PeckShield Audit Report #: 2021-392

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/23 PeckShield Audit Report #: 2021-392

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/23 PeckShield Audit Report #: 2021-392

Public

comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

9/23 PeckShield Audit Report #: 2021-392

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the FilDA protocol. During
the first phase of our audit, we study the smart contract source code and run our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 2

Medium 1

Low 2

Informational 0

Total 5

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/23 PeckShield Audit Report #: 2021-392

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 2 high-severity vulnerabil-
ities, 1 medium-severity vulnerability, and 2 low-severity vulnerabilities.

Table 2.1: Key FilDA Audit Findings

ID Severity Title Category Status
PVE-001 High Uninitialized State Index DoS From Re-

ward Activation
Business Logic Fixed

PVE-002 Low Improved Logic of QsSushiLPDele-
gate::doTransferIn()

Business Logic Fixed

PVE-003 High Proper stSushiPerShare Accounting in
WMiniChefV2

Business Logic Fixed

PVE-004 Low Accommodation of Non-ERC20-
Compliant Tokens

Coding Practice Fixed

PVE-005 Medium Trust Issue of Admin Keys Security Feature Mitigated

Besides the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

11/23 PeckShield Audit Report #: 2021-392

Public

3 | Detailed Results

3.1 Uninitialized State Index DoS From Reward Activation

• ID: PVE-001

• Severity: High

• Likelihood: Medium

• Impact: High

• Target: Qstroller

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

The FilDA protocol provides incentive mechanisms that reward the protocol users. Specifically, the
reward mechanism follows the same approach as the COMP reward in Compound. Our analysis on the
related COMP reward in FilDA shows the current logic needs to be improved.

To elaborate, we show below the initial logic of _setCompSpeeds() that kicks off the actual minting
of protocol tokens. It comes to our attention that the initial supply-side index is configured on the
conditions of compSupplyState[cToken].index == 0 and compSupplyState[cToken].block == 0 (line 908).
However, for an already listed market with a current speed of 0, the first condition is indeed met
while the second condition does not! The reason is that both supply-side state and borrow-side
state have the associated block information updated, which is diligently performed via other helper
pairs updateCompSupplyIndex()/updateCompBorrowIndex(). As a result, the _setCompSpeedInternal()

logic does not properly set up the default supply-side index and the default borrow-side index.

49 function _setCompSpeeds(address [] memory _allMarkets , uint[] memory _compSpeeds)
public {

50 // Check caller is admin
51 require(msg.sender == admin);

53 require(_allMarkets.length == _compSpeeds.length);

55 for (uint i = 0; i < _allMarkets.length; i++) {
56 _setCompSpeedInternal(_allMarkets[i], _compSpeeds[i]);
57 }
58 }

12/23 PeckShield Audit Report #: 2021-392

Public

60 function _setCompSpeedInternal(address _cToken , uint _compSpeed) internal {
61 Market storage market = markets[_cToken];
62 if (market.isComped == false) {
63 _addCompMarketInternal(_cToken);
64 }
65 uint currentCompSpeed = compSpeeds[_cToken];
66 uint currentSupplySpeed = currentCompSpeed >> 128;
67 uint currentBorrowSpeed = uint128(currentCompSpeed);

69 uint newSupplySpeed = _compSpeed >> 128;
70 uint newBorrowSpeed = uint128(_compSpeed);
71 if (currentSupplySpeed != newSupplySpeed) {
72 updateCompSupplyIndex(_cToken);
73 }
74 if (currentBorrowSpeed != newBorrowSpeed) {
75 Exp memory borrowIndex = Exp({ mantissa: CToken(_cToken).borrowIndex ()});
76 updateCompBorrowIndex(_cToken , borrowIndex);
77 }
78 compSpeeds[_cToken] = _compSpeed;
79 }

Listing 3.1: Qstroller::_setCompSpeeds()

900 function _addCompMarketInternal(address cToken) internal {
901 Market storage market = markets[cToken];
902 require(market.isListed == true , "!listed");
903 require(market.isComped == false , "already added");

905 market.isComped = true;
906 emit MarketComped(CToken(cToken), true);

908 if (compSupplyState[cToken]. index == 0 && compSupplyState[cToken]. block == 0) {
909 compSupplyState[cToken] = CompMarketState ({
910 index: compInitialIndex ,
911 block: safe32(getBlockNumber (), "exceeds 32 bits")
912 });
913 }

915 if (compBorrowState[cToken]. index == 0 && compBorrowState[cToken]. block == 0) {
916 compBorrowState[cToken] = CompMarketState ({
917 index: compInitialIndex ,
918 block: safe32(getBlockNumber (), "exceeds 32 bits")
919 });
920 }
921 }

Listing 3.2: Comptroller::_addCompMarketInternal()

When the reward speed is configured, since the supply-side and borrow-side state indexes are not
initialized, any normal functionality such as mint() will be immediately reverted! This revert occurs in-
side the distributeSupplierComp()/distributeBorrowerComp() functions. Using the distributeSupplierComp

13/23 PeckShield Audit Report #: 2021-392

Public

() function as an example, the revert is caused from the arithmetic operation sub_(supplyIndex,

supplierIndex) (line 820). Since the supplyIndex is not properly initialized, it will be updated to a
smaller number from an earlier invocation of updateCompSupplyIndex() (line 72). However, when the
distributeSupplierComp() function is invoked, the supplierIndex is reset with compInitialIndex (line
817), which unfortunately reverts the arithmetic operation sub_(supplyIndex, supplierIndex)!

810 function distributeSupplierComp(address cToken , address supplier , bool distributeAll
) internal {

811 CompMarketState storage supplyState = compSupplyState[cToken];
812 Double memory supplyIndex = Double ({ mantissa: supplyState.index});
813 Double memory supplierIndex = Double ({ mantissa: compSupplierIndex[cToken][

supplier]});
814 compSupplierIndex[cToken][supplier] = supplyIndex.mantissa;

816 if (supplierIndex.mantissa == 0 && supplyIndex.mantissa > 0) {
817 supplierIndex.mantissa = compInitialIndex;
818 }

820 Double memory deltaIndex = sub_(supplyIndex , supplierIndex);
821 uint supplierTokens = CToken(cToken).balanceOf(supplier);
822 uint supplierDelta = mul_(supplierTokens , deltaIndex);
823 uint supplierAccrued = add_(compAccrued[supplier], supplierDelta);
824 compAccrued[supplier] = transferComp(supplier , supplierAccrued , distributeAll ?

0 : compClaimThreshold);
825 emit DistributedSupplierComp(CToken(cToken), supplier , supplierDelta ,

supplyIndex.mantissa);
826 }

Listing 3.3: Comptroller::distributeSupplierComp()

Recommendation Properly initialize the reward state indexes in the above affected _addCompMarketInternal

() function. An example revision is shown as follows:

900 function _addCompMarketInternal(address cToken) internal {
901 Market storage market = markets[cToken];
902 require(market.isListed == true , "!listed");
903 require(market.isComped == false , "already added");

905 market.isComped = true;
906 emit MarketComped(CToken(cToken), true);

908 if (compSupplyState[cToken]. index == 0) {
909 compSupplyState[cToken].index = compInitialIndex;
910 }
911 compSupplyState[cToken].block = safe32(getBlockNumber ();

913 if (compBorrowState[cToken]. index == 0) {
914 compBorrowState[cToken].index = compInitialIndex;
915 }
916 compBorrowState[cToken].block = safe32(getBlockNumber ();

14/23 PeckShield Audit Report #: 2021-392

Public

917 }

Listing 3.4: Comptroller::_addCompMarketInternal()

Status The issue has been fixed by this commit: 920d8a0.

3.2 Improved Logic of QsSushiLPDelegate::doTransferIn()

• ID: PVE-002

• Severity: Low

• Likelihood: Medium

• Impact: Low

• Target: QsSushiLPDelegate, QsSushiLPDelegate

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

The FilDA protocol has the lending pool component, which is in essence an over-collateralized lending
protocol that supports a number of normal lending functionalities for supplying and borrowing users,
i.e., mint()/redeem() and borrow()/repay(). In the following, we examine the support of wrapping
SushiLP as collateral.

To elaborate, we show below the related doTransferIn() function, which is designed to transfer in
the underlying assets and sweep into sushiPool. While it properly deposits the underlying asset into
sushiPool, it misses the call to timely claim possible SUSHI and COMP rewards (via claimRewardsFromSushi

()).

246 /**
247 * @notice Transfer the underlying to this contract and sweep into master chef
248 * @param from Address to transfer funds from
249 * @param amount Amount of underlying to transfer
250 * @return The actual amount that is transferred
251 */
252 function doTransferIn(address from , uint amount) internal returns (uint) {
253 // Perform the EIP -20 transfer in
254 EIP20Interface token = EIP20Interface(underlying);
255 require(token.transferFrom(from , address(this), amount), "!transfer");
256
257 // Deposit to sushi pool.
258 sushiPool.deposit(pid , amount , address(this));
259
260 updateLPSupplyIndex ();
261 updateSupplierIndex(from);
262
263 mintToFilda ();
264

15/23 PeckShield Audit Report #: 2021-392

https://github.com/fildaio/compound-protocol/commit/920d8a0

Public

265 return amount;
266 }

Listing 3.5: QsSushiLPDelegate::doTransferIn()

In addition, we notice the need of calling mintToFilda() after all indexes are updated (lines 260-
263). However, this is violated in the seizeInternal() routine from the same contract. Note that the
same issue is also applicable to two other contracts QsQuickLPDelegate and QsQuickDualLPDelegate.

281 function seizeInternal(address seizerToken , address liquidator , address borrower ,
uint seizeTokens) internal returns (uint) {

282 claimRewardsFromSushi ();
283
284 updateLPSupplyIndex ();
285 updateSupplierIndex(liquidator);
286 updateSupplierIndex(borrower);
287
288 mintToFilda ();
289
290 address safetyVault = Qstroller(address(comptroller)).qsConfig ().safetyVault ();
291 updateSupplierIndex(safetyVault);
292
293 return super.seizeInternal(seizerToken , liquidator , borrower , seizeTokens);
294 }

Listing 3.6: QsSushiLPDelegate::seizeInternal()

Recommendation Timely claim rewards so that they can fairly distributed to current protocol
users.

Status The issue has been fixed by this commit: f848a69.

3.3 Proper stSushiPerShare Accounting in WMiniChefV2

• ID: PVE-003

• Severity: High

• Likelihood: Medium

• Impact: High

• Target: WMiniChefV2, WStakingDualRewards

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

The FilDA protocol has another farming component that extends the solid base of Alpha HomoraV2

to further wrap additional staking contracts including WMiniChefV2 and WStakingDualRewards. While
examining the extended support, we notice the pairing logic needs to be improved.

16/23 PeckShield Audit Report #: 2021-392

https://github.com/fildaio/compound-protocol/pull/28/commits/f848a69

Public

In particular, we show below the related mint/burn pair from the WMiniChefV2 contract. We notice
that the accounting information of sushiPerShare is properly maintained for each ERC1155-based
token id. However, another accounting information of stRewardPerShare[pid] is saved per each pool
id. In other words, the stRewardPerShare[pid] state is not specific for each ERC1155-based token id,
which unfortunately leads to improper reward distribution when the token is burnt.

62 function mint(uint pid , uint amount) external nonReentrant returns (uint) {
63 address lpToken = chef.lpToken(pid);
64 IERC20(lpToken).safeTransferFrom(msg.sender , address(this), amount);
65 if (IERC20(lpToken).allowance(address(this), address(chef)) != uint(-1)) {
66 // We only need to do this once per pool , as LP token’s allowance won’t decrease

if it’s -1.
67 IERC20(lpToken).safeApprove(address(chef), uint(-1));
68 }
69
70 chef.deposit(pid , amount , address(this));
71
72 IRewarder rewarder = chef.rewarder(pid);
73 (stRewardPerShare[pid], ,) = rewarder.poolInfo(pid);
74
75 (uint128 sushiPerShare , ,) = chef.poolInfo(pid);
76 uint id = encodeId(pid , sushiPerShare);
77 _mint(msg.sender , id , amount , ’’);
78 return id;
79 }

Listing 3.7: WMiniChefV2::mint()

85 function burn(uint id, uint amount) external nonReentrant returns (uint) {
86 if (amount == uint(-1)) {
87 amount = balanceOf(msg.sender , id);
88 }
89 (uint pid , uint stSushiPerShare) = decodeId(id);
90 _burn(msg.sender , id , amount);
91 chef.withdrawAndHarvest(pid , amount , address(this));
92 address lpToken = chef.lpToken(pid);
93 (uint128 enSushiPerShare , ,) = chef.poolInfo(pid);
94 IERC20(lpToken).safeTransfer(msg.sender , amount);
95 uint stSushi = stSushiPerShare.mul(amount).divCeil (1e12);
96 uint enSushi = uint(enSushiPerShare).mul(amount).div(1e12);
97 if (enSushi > stSushi) {
98 sushi.safeTransfer(msg.sender , enSushi.sub(stSushi));
99 }

100
101 IRewarder rewarder = chef.rewarder(pid);
102 (uint128 enRewardPerShare , ,) = rewarder.poolInfo(pid);
103 (IERC20 [] memory rewardTokens ,) = rewarder.pendingTokens(pid , address(this), 0);
104 uint stReward = stRewardPerShare[pid].mul(amount).divCeil (1e12);
105 uint enReward = uint(enRewardPerShare).mul(amount).div(1e12);
106 if (enReward > stReward) {
107 rewardTokens [0]. safeTransfer(msg.sender , enReward.sub(stReward));

17/23 PeckShield Audit Report #: 2021-392

Public

108 }
109 return pid;
110 }

Listing 3.8: WMiniChefV2::burn()

The same issue is also applicable to another wrapper, i.e., WStakingDualRewards.

Recommendation Maintain the proper accounting information for each token ID, instead of
the pool id.

Status The issue has been fixed by this commit: 28e8c87.

3.4 Accommodation of Non-ERC20-Compliant Tokens

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [5]

• CWE subcategory: CWE-628 [2]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow
the specification or have additional functionalities beyond the specification. In the following, we
examine the transfer() routine and related idiosyncrasies from current widely-used token contracts.

In particular, we use the popular token, i.e., ZRX, as our example. We show the related code
snippet below. On its entry of transfer(), there is a check, i.e., if (balances[msg.sender] >= _value

&& balances[_to] + _value >= balances[_to]). If the check fails, it returns false. However, the
transaction still proceeds successfully without being reverted. This is not compliant with the ERC20
standard and may cause issues if not handled properly. Specifically, the ERC20 standard specifies the
following: “Transfers _value amount of tokens to address _to, and MUST fire the Transfer event.
The function SHOULD throw if the message caller’s account balance does not have enough tokens
to spend.”

64 f unc t i on t r a n s f e r (address _to , u in t _value) r e tu rn s (bool) {
65 // Default assumes totalSupply can’t be over max (2^256 - 1).
66 i f (b a l a n c e s [msg . sender] >= _value && ba l a n c e s [_to] + _value >= ba l a n c e s [_to]) {
67 ba l a n c e s [msg . sender] −= _value ;
68 ba l a n c e s [_to] += _value ;
69 Transfer (msg . sender , _to , _value) ;
70 re tu rn t rue ;
71 } e l s e { re tu rn f a l s e ; }
72 }

18/23 PeckShield Audit Report #: 2021-392

https://github.com/fildaio/alpha-homora-v2-contract/pull/8/commits/28e8c87
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20

Public

74 f unc t i on t r a n s f e rF r om (address _from , address _to , u in t _value) r e tu rn s (bool) {
75 i f (b a l a n c e s [_from] >= _value && a l l owed [_from] [msg . sender] >= _value &&

ba l a n c e s [_to] + _value >= ba l a n c e s [_to]) {
76 ba l a n c e s [_to] += _value ;
77 ba l a n c e s [_from] −= _value ;
78 a l l owed [_from] [msg . sender] −= _value ;
79 Transfer (_from , _to , _value) ;
80 re tu rn t rue ;
81 } e l s e { re tu rn f a l s e ; }
82 }

Listing 3.9: ZRX.sol

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return false
without reverts. Moreover, the safe version also supports tokens that return no value (and instead
revert or throw on failure). Note that non-reverting calls are assumed to be successful. Similarly,
there is a safe version of approve()/transferFrom() as well, i.e., safeApprove()/safeTransferFrom().

In the following, we show the claimRewards() routine in the QsQuickLpDelegate contract. If the USDT

token is supported as token, the unsafe version of EIP20Interface(token).transfer(account, accrued)

(line 145) may revert as there is no return value in the USDT token contract’s transfer()/transferFrom

() implementation (but the IERC20 interface expects a return value)!

120 function claimRewards(address account) public returns (uint) {
121 claimFromQuick ();
122
123 updateLPSupplyIndex ();
124 updateSupplierIndex(account);
125
126 mintToFilda ();
127
128 // Get user’s token accrued.
129 for (uint8 i = 0; i < rewardsTokens.length; i++) {
130 address token = rewardsTokens[i];
131
132 uint accrued = tokenUserAccrued[account][token];
133 if (accrued == 0) continue;
134
135 lpSupplyStates[token]. balance = sub_(lpSupplyStates[token].balance , accrued)

;
136
137 if (rewardsFToken[token] != address (0)) {
138 uint err = CErc20(rewardsFToken[token]).redeemUnderlying(accrued);
139 require(err == 0, "redeem fmdx failed");
140 }
141
142 // Clear user’s token accrued.
143 tokenUserAccrued[account][token] = 0;
144

19/23 PeckShield Audit Report #: 2021-392

Public

145 EIP20Interface(token).transfer(account , accrued);
146 }
147
148 return 0;
149 }

Listing 3.10: QsQuickLpDelegate::claimRewards()

This issue is present in other contracts, including QsMdxDelegate, QsSushiLPDelegate, QsQuickLPDelegate
, QsQuickDualLPDelegate().

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve()/transfer()/transferFrom(). Note the safeApprove() counterpart may need to invoke twice:
the first time resets the allowance to 0 and the second time sets the intended spending allowance.

Status The issue has been fixed by this commit: f848a69.

3.5 Trust Issue of Admin Keys

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [4]

• CWE subcategory: CWE-287 [1]

Description

In the FilDA protocol, there is a privileged owner account that plays a critical role in governing and
regulating the system-wide operations (e.g., parameter setting and marketing adjustment). It also has
the privilege to control or govern the flow of assets managed by this protocol. Our analysis shows that
the privileged account needs to be scrutinized. In the following, we examine the privileged account
and their related privileged accesses in current contracts.

130 function _setCreditLimit(address protocol , uint creditLimit) public {
131 require(msg.sender == owner (), "only owner can set protocol credit limit");
132
133 creditLimits[protocol] = creditLimit;
134 emit CreditLimitChanged(protocol , creditLimit);
135 }
136
137 function _setCompToken(address _compToken) public onlyOwner {
138 address oldCompToken = compToken;
139 compToken = _compToken;
140 emit NewCompToken(oldCompToken , compToken);
141 }
142

20/23 PeckShield Audit Report #: 2021-392

https://github.com/fildaio/compound-protocol/pull/28/commits/f848a69

Public

143 function _setSafetyVault(address _safetyVault) public onlyOwner {
144 address oldSafetyVault = safetyVault;
145 safetyVault = _safetyVault;
146 emit NewSafetyVault(oldSafetyVault , safetyVault);
147 }
148
149 function _setSafetyVaultRatio(uint _safetyVaultRatio) public onlyOwner {
150 uint oldSafetyVaultRatio = safetyVaultRatio;
151 safetyVaultRatio = _safetyVaultRatio;
152 emit NewSafetyVaultRatio(oldSafetyVaultRatio , safetyVaultRatio);
153 }

Listing 3.11: Example Setters in the QsConfig Contract

Apparently, if the privileged owner account is a plain EOA account, this may be worrisome and
pose counter-party risk to the exchange users. Note that a multi-sig account could greatly alleviate
this concern, though it is still far from perfect. Specifically, a better approach is to eliminate the
administration key concern by transferring the role to a community-governed DAO. In the meantime,
a timelock-based mechanism can also be considered as mitigation.

Moreover, it should be noted that current contracts have the support of being deployed behind
a proxy. And there is a need to properly manage the proxy-admin privileges as they fall in this trust
issue as well.

7 contract TransparentUpgradeableProxyImpl is TransparentUpgradeableProxy {
8 constructor(
9 address _logic ,

10 address _admin ,
11 bytes memory _data
12) public payable TransparentUpgradeableProxy(_logic , _admin , _data) {}
13 }

Listing 3.12: TransparentUpgradeableProxyImpl::constructor()

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been confirmed with the team. For the time being, the team has clarified
the plan to migrate the owner account to a trusted multi-sig account with necessary timelock.

21/23 PeckShield Audit Report #: 2021-392

Public

4 | Conclusion

In this audit, we have analyzed the FilDA design and implementation. The system presents a unique,
robust offering as a decentralized money market protocol with both secure lending and leveraged
farming. The protocol designs are architected and forked based on Compound and Alpha HomoraV2 and
synced into the FilDA platform to capitalize the benefits of both systems. The current code base is
well structured and neatly organized. Those identified issues are promptly confirmed and addressed.

Moreover, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

22/23 PeckShield Audit Report #: 2021-392

Public

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-628: Function Call with Incorrectly Specified Arguments. https://cwe.mitre.org/

data/definitions/628.html.

[3] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/data/

definitions/841.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[5] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[6] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

23/23 PeckShield Audit Report #: 2021-392

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About FilDA
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Uninitialized State Index DoS From Reward Activation
	Improved Logic of QsSushiLPDelegate::doTransferIn()
	Proper stSushiPerShare Accounting in WMiniChefV2
	Accommodation of Non-ERC20-Compliant Tokens
	Trust Issue of Admin Keys

	Conclusion
	References

