
Security Assessment

FilDA
Jun 1st, 2021

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
BAF-01 : Missing emit event

FLF-01 : Pragma version not locked

FLF-02 : Discussion on `sub(1e8)`

FLF-03 : Potentially excessive permissions

FMF-01 : State variables that could be declared constant

FMF-02 : Divide before multiple

Appendix

Disclaimer

About

FilDA Security Assessment

Summary
This report has been prepared for FilDa smart contracts, to discover issues and vulnerabilities in the source

code of their Smart Contract as well as any contract dependencies that were not part of an officially

recognized library. A comprehensive examination has been performed, utilizing Static Analysis and Manual

Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross-referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts that are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

FilDA Security Assessment

Overview

Project Summary

Project Name FilDA

Description

Flash Loans are special uncollateralised loans that allow the borrowing of an asset,
as long as the borrowed amount (and a fee) is returned before the end of the
transaction.

Platform Heco

Language Solidity

Codebase
https://github.com/fildaio/FlashLoan
https://github.com/fildaio/FlashLoanAdapter

Commits

47219fe5934393a0527b83b5be41f75d75e397b4
70a4b43a3ab76cfd5f76e52cbd163df76bbfcc0c
a418c518ba62997a71462d3c628c279b9c566f5b
ebd9052f7456535e90a704a4ccdb220a647fb9f6
1d8e0a7ef00b9c4280a95e2e8e91e6e834ae07fe

Audit Summary

Delivery Date Jun 01, 2021

Audit Methodology Static Analysis, Manual Review

Key Components FlashLoan, FlashLoanAdapter

FilDA Security Assessment

https://github.com/fildaio/FlashLoan
https://github.com/fildaio/FlashLoanAdapter

Vulnerability Summary

Total Issues 6

Critical 0

Major 0

Medium 0

Minor 1

Informational 5

Discussion 0

FilDA Security Assessment

Audit Scope

ID file SHA256 Checksum

FLF FlashLoan/FlashLoan.sol f9a74a6483d32cf7e2935f3deb24f7f0c5fe1590e2d04f8d0be21a8f9793568e

FLR
FlashLoan/FlashLoanReceiver
Base.sol

fe9d80e80a3e1c46d2affdab564eea3daebb536a83321357579eb3a2da61f837

FLS
FlashLoan/FlashLoanStorage.s
ol

daa1557ac8a36f95470b852b09ea5a21525baf7c0f52117a6b8dfc25c3bebfcc

GFL FlashLoan/Governable.sol 3a91976f71b84f54ff43856b0833191d5dc561fa14af5cd8fdc71a28654b10ef

IFL FlashLoan/IFlashLoan.sol c9610743b9458f704179ad296ed7f76db5fb118ea8e4bbd03e8bfb6af2441d60

IFR
FlashLoan/IFlashLoanReceiver.
sol

bec9be3383aa599682aba3a26d143e966ed95f0033d03c9730656b00a72e0c7e

MFL FlashLoan/Migrations.sol 8a6b38936c738a0e612391ee231f39352cc8878f4a5b41c05f0895fb662b3fd6

FLD FlashLoan/dependency.sol 79087b32295fae36bc2aad879e211e233e65513d61204ccbb48ac48e88c23f8d

BAF
FlashLoanAdapter/BaseAdapte
r.sol

750afaf87b16c4b12b057a382ac0ecbd35bfd6121fda2dc25dbbf9ee880fcbc4

FMF
FlashLoanAdapter/FeeManage
r.sol

5f60c64994d10f1b1a7b254ac3bf1bfd0313f8a9e755ab587770028d3fcafaa1

GFA
FlashLoanAdapter/Governable.
sol

3a91976f71b84f54ff43856b0833191d5dc561fa14af5cd8fdc71a28654b10ef

LSF
FlashLoanAdapter/LiquiditySw
ap.sol

02949c112add72bf1d4b0f1d7cfca1b1a09336b1883ce4a1f96ffbdfd182a224

MFA
FlashLoanAdapter/Migrations.s
ol

8a6b38936c738a0e612391ee231f39352cc8878f4a5b41c05f0895fb662b3fd6

RLF
FlashLoanAdapter/RepayLoan.
sol

30fc679d6b47eb86d5ce4c60fe251d8ea9fb0e3e6beea11d97c6e9dc438b26a8

RPF
FlashLoanAdapter/RewardPoo
l.sol

b6fb626c7d4c94343578328e44949efc4bd0d566cff6cccf73b62c22800ef924

WET FlashLoanAdapter/WETH.sol 16308e34952c4385bdcd86fada6621b8e0a7d89d0894cce769fcb19fa388f26a

FilDA Security Assessment

ID file SHA256 Checksum

FLA
FlashLoanAdapter/dependenc
y.sol

79087b32295fae36bc2aad879e211e233e65513d61204ccbb48ac48e88c23f8d

FLB
FlashLoanAdapter/flashloan/Fl
ashLoanReceiverBase.sol

8687c06b07452646de67897dfd2d1ccb357aae8078989860dab4d9e4b263892e

IFF
FlashLoanAdapter/flashloan/IFl
ashLoan.sol

2c81ab0585fcbccece02520ce9b7ffea0dd5417097d0146755a622794d8fa602

IFA
FlashLoanAdapter/flashloan/IFl
ashLoanReceiver.sol

0e46d513af7bed5bb0885fe323ef1126fc631a47424b76de5d0772badf1d596f

FilDA Security Assessment

System Overview

FilDA is a highly secure decentralized banking platform containing two fundamental protocols.

Banking - Lending and Borrowing assets (based on Compound)

Staking - Locking of assets to earn rewards (based on Harvest)

These two protocols allow users to:

Deposit - crypto-assets to earn interest (dynamic rates

Borrow - a variety of crypto assets with no fixed terms

Stake - crypto pairs in liquidity pools to earn rewards (in FilDA)

Running on the Huobi ECO Chain (HECO) provides a safe and secure environment, with fast transactions

and low fees. HECO is a space for users to participate in the DeFi experience, while at the same time,

combats many of the performance and cost issues faced by competing platforms.

Audit Overview

The scope of the current audit is FlashLoan and FlashLoanAdapter . And this part has external

dependencies (like Chainlink, and Compound). And these external dependencies protocols are not in the

scope of this audit.

FlashLoan - uncollateralized loans that allow borrowing an asset, as long as the borrowed amount is

returned before the end of the transaction.

FlashLoanAdapter - repay the loan by FlashLoan.

FilDA Security Assessment

Findings

ID Title Category Severity Status

BAF-01 Missing emit event Coding Style Informational Resolved

FLF-01 Pragma version not locked Coding Style Informational Resolved

FLF-02 Discussion on sub(1e8) Logical Issue Informational Resolved

FLF-03 Potentially excessive permissions
Centralization /
Privilege

Minor Resolved

FMF-01
State variables that could be declared
constant

Coding Style Informational Resolved

FMF-02 Divide before multiple Mathematical Operations Informational Resolved

FilDA Security Assessment

6
Total Issues

Critical 0 (0.00%)

Major 0 (0.00%)

Medium 0 (0.00%)

Minor 1 (16.67%)

Informational 5 (83.33%)

Discussion 0 (0.00%)

BAF-01 | Missing emit event

Category Severity Location Status

Coding Style Informational FlashLoanAdapter/BaseAdapter.sol: 71(BaseAdapter) Resolved

Description

Function setFeeManager is only called by governance, it allows the caller to change the feeManager

address. And the state variable feeManager is used to calculate the flash loan fee. It is better to add emit

event to track the changes on variable value.

Recommendation

We recommend adding event and emit it in the function setFeeManager .

Alleviation

FilDA team heeded the advice. Added an event in function setFeeManager and applied in commited

1d8e0a7ef00b9c4280a95e2e8e91e6e834ae07fe .

FilDA Security Assessment

https://github.com/CertiKProject/certik-audit-projects/blob/filda/projects/FilDa/FlashLoanAdapter/BaseAdapter.sol
https://github.com/CertiKProject/certik-audit-projects/blob/filda/projects/FilDa/FlashLoanAdapter/BaseAdapter.sol#L71

FLF-01 | Pragma version not locked

Category Severity Location Status

Coding Style Informational FlashLoan/FlashLoan.sol: 2 Resolved

Description

solc frequently releases new compiler versions. Using an old version prevents access to new Solidity

security checks.

The contract uses some different versions, such as pragma solidity >=0.4.22 <0.8.0; , pragma

solidity ^0.5.0; and pragma solidity ^0.5.16; , and all of these are not locked. This is not

recommended. Pragmas should be locked to specific compiler versions and flags that they have been

tested the most with. Locking the pragma helps ensure that contracts do not accidentally get deployed

using, for example, the latest compiler, which may have higher risks of undiscovered bugs.

Recommendation

Avoid a floating pragma version instead specify pragma version without using the caret symbol, i.e. pragma

solidity 0.6.11;

Deploy with any of the following solidity versions:

0.5.11 - 0.5.13

0.5.15 - 0.5.17

0.6.8

0.6.10 - 0.6.11

Use a simple pragma version that allows any of these versions.

We recommend using latest version of solidity for testing.

Alleviation

FilDA team heeded the advice and used 0.5.16 version in the truffle-config.js file.

FilDA Security Assessment

https://github.com/CertiKProject/certik-audit-projects/blob/filda/projects/FilDa/FlashLoan/FlashLoan.sol
https://github.com/CertiKProject/certik-audit-projects/blob/filda/projects/FilDa/FlashLoan/FlashLoan.sol#L2

FLF-02 | Discussion on sub(1e8)

Category Severity Location Status

Logical Issue Informational FlashLoan/FlashLoan.sol: 300 Resolved

Description

Why use sub(1e8) in line 300?

300300 returnreturn liquidity liquidity..subsub((1e81e8))..mulmul((1010****decimalsdecimals))..divdiv((tokenPricetokenPrice));;

Alleviation

FilDA team removed the sub(1e8) code and it was applied in commit

a418c518ba62997a71462d3c628c279b9c566f5b .

FilDA Security Assessment

https://github.com/CertiKProject/certik-audit-projects/blob/filda/projects/FilDa/FlashLoan/FlashLoan.sol
https://github.com/CertiKProject/certik-audit-projects/blob/filda/projects/FilDa/FlashLoan/FlashLoan.sol#L300

FLF-03 | Potentially excessive permissions

Category Severity Location Status

Centralization / Privilege Minor FlashLoan/FlashLoan.sol: 280 Resolved

Description

Function setOracle is only called by the governance, and it allows the caller to set _oracle address. This

oracle address is used to get token price. To improve the trustworthiness of this protocol, any plan to set

the _oracle address should move to the execution queue of the Timelock, and also add an emit event ,

and make the governance Multi-sig.

Recommendation

We recommend adding an emit event at the setOracle function. And then transfer the governance of

this contract to Timelock, it is better to make the governance Multi-sig, or implement DAO.

Alleviation

FilDA team added an event in function setOracle and would transfer the governance to a Multi-sig

contract. The change was applied in commit ebd9052f7456535e90a704a4ccdb220a647fb9f6 .

FilDA Security Assessment

https://github.com/CertiKProject/certik-audit-projects/blob/filda/projects/FilDa/FlashLoan/FlashLoan.sol
https://github.com/CertiKProject/certik-audit-projects/blob/filda/projects/FilDa/FlashLoan/FlashLoan.sol#L280

FMF-01 | State variables that could be declared constant

Category Severity Location Status

Coding Style Informational FlashLoanAdapter/FeeManager.sol: 14~16 Resolved

Description

Constant state variables could be declared constant to save gas. And constant variable should be named

UPPER_CASE_WITH_UNDERSCORES.

Recommendation

We recommend declaring the state variables as constant variables. And constant variables should be

named UPPER_CASE_WITH_UNDERSCORES.

Alleviation

FilDA team heeded our advice and renamed the constant state variables

UPPER_CASE_WITH_UNDERSCORES.

The code was applied in commit 1d8e0a7ef00b9c4280a95e2e8e91e6e834ae07fe .

FilDA Security Assessment

https://github.com/CertiKProject/certik-audit-projects/blob/filda/projects/FilDa/FlashLoanAdapter/FeeManager.sol
https://github.com/CertiKProject/certik-audit-projects/blob/filda/projects/FilDa/FlashLoanAdapter/FeeManager.sol#L14

FMF-02 | Divide before multiple

Category Severity Location Status

Mathematical Operations Informational FlashLoanAdapter/FeeManager.sol: 35(FeeManager) Resolved

Description

Solidity integer division might truncate. As a result, performing multiplication before division can

sometimes avoid loss of precision.

100100
amountamount..mulmul((freeQuotafreeQuota..subsub((balancebalance))))..divdiv((freeQuotafreeQuota))..mulmul((feeMolecularfeeMolecular))..divdiv((feeDenominatorfeeDenominator))

Alleviation

FilDA team heeded our advice and performed multiplication before division.

The code was applied in commit 1d8e0a7ef00b9c4280a95e2e8e91e6e834ae07fe .

FilDA Security Assessment

https://github.com/CertiKProject/certik-audit-projects/blob/filda/projects/FilDa/FlashLoanAdapter/FeeManager.sol
https://github.com/CertiKProject/certik-audit-projects/blob/filda/projects/FilDa/FlashLoanAdapter/FeeManager.sol#L35

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Mathematical Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incorrect

operations etc.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

FilDA Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the Company

only to the extent permitted under the terms and conditions set forth in the Agreement. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes without CertiK’s prior

written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

FilDA Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

FilDA Security Assessment

