
0

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Vulnerability Information

4 Code Overview

4.1 Contracts Description

4.2 Visibility Description

4.3 Vulnerability Summary

5 Audit Result

6 Statement

1

1 Executive Summary

On 2021.10.15, the SlowMist security team received the Filda team's security audit application for Filda 2.0,

developed the audit plan according to the agreement of both parties and the characteristics of the project, and finally

issued the security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a complete

security test on the project in the way closest to the real attack.

The test method information:

Test method Description

Black box
testing

Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the
internal running status, mining weaknesses.

White box
testing

Based on the open source code, non-open source code, to detect whether there are
vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi
project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is
strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is
recommended to fix medium-risk vulnerabilities.

Low
Low severity vulnerabilities may affect the operation of the DeFi project in certain
scenarios. It is suggested that the project team should evaluate and consider whether
these vulnerabilities need to be fixed.

Weakness There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.

2

Level Description

Suggestion There are better practices for coding or architecture.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using automated

analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

Reentrancy Vulnerability

Replay Vulnerability

Reordering Vulnerability

Short Address Vulnerability

Denial of Service Vulnerability

Transaction Ordering Dependence Vulnerability

Race Conditions Vulnerability

Authority Control Vulnerability

Integer Overflow and Underflow Vulnerability

TimeStamp Dependence Vulnerability

Uninitialized Storage Pointers Vulnerability

Arithmetic Accuracy Deviation Vulnerability

tx.origin Authentication Vulnerability

3

3 Project Overview

3.1 Project Introduction

Audit of only the iterations based on version 1.0

Audit Version:

https://github.com/fildaio/compound-protocol/tree/filda_2.0

commit: 57616f29bf95f582f05450ccf0199733ea81168b

Fixed Version:

https://github.com/fildaio/compound-protocol/tree/filda_2.0

commit: 17674bbb3c4a339c924cef93552a6a6602739f36

3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

"False top-up" Vulnerability

Variable Coverage Vulnerability

Gas Optimization Audit

Malicious Event Log Audit

Redundant Fallback Function Audit

Unsafe External Call Audit

Explicit Visibility of Functions State Variables Aduit

Design Logic Audit

Scoping and Declarations Audit

4

NO Title Category Level StatusNO Title Category Level Status

N1
Native token receiving

issue
Others Suggestion Confirmed

N2 Missing event record Others Suggestion Fixed

N3 Code redundancy issue Others Suggestion Confirmed

N4 Flashloan issue
Design Logic

Audit
Critical Fixed

N5
Potential calculation

flaws in flashloan fees
Design Logic

Audit
Suggestion Confirmed

4 Code Overview

4.1 Contracts Description

The main network address of the contract is as follows:

The code was not deployed to the mainnet.

4.2 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

ChainlinkAdaptor

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

getUnderlyingPrice External - -

getUnderlyingPriceFromFallback Public - -

5

ChainlinkAdaptor

getUnderlyingPriceFromChainlink Internal - -

preCheckPrice External - -

getSourcePrice Public - -

getPrice Public - -

setAssetSources External Can Modify State onlyGovernance

setFallbackPriceOracle External Can Modify State onlyGovernance

_setAssetsSources Internal Can Modify State -

DefaultHecoInterestModel

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

utilizationRate Public - -

getBorrowRate Public - -

getSupplyRate Public - -

QsBorrowCapCErc20Delegate

Function Name Visibility Mutability Modifiers

_setBorrowCap Public Can Modify State -

borrowInternal Internal Can Modify State nonReentrant

HecoJumpInterestModel

6

HecoJumpInterestModel

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

utilizationRate Public - -

getBorrowRate Public - -

getSupplyRate Public - -

QsConfig

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

_setMarketBorrowCaps External Can Modify State onlyOwner

_setMarketFlashLoanCaps External Can Modify State onlyOwner

_setMarketSupplyCaps External Can Modify State onlyOwner

_setCreditLimit Public Can Modify State -

_setCompToken Public Can Modify State onlyOwner

_setSafetyVault Public Can Modify State onlyOwner

_setSafetyVaultRatio Public Can Modify State onlyOwner

_setCompSpeedGuardianPaused Public Can Modify State onlyOwner

_setPendingSafetyGuardian External Can Modify State -

_acceptSafetyGuardian External Can Modify State -

getCreditLimit External - -

7

QsConfig

getBorrowCap External - -

getSupplyCap External - -

getFlashLoanCap External - -

calculateSeizeTokenAllocation Public - -

getCompAllocation Public - -

getFlashFee External - -

_setCompRatio Public Can Modify State onlyOwner

isBlocked Public - -

_addToWhitelist Public Can Modify State onlyOwner

_removeFromWhitelist Public Can Modify State onlyOwner

_addToBlacklist Public Can Modify State onlyOwner

_removeFromBlacklist Public Can Modify State onlyOwner

_setFlashLoanFeeRatio Public Can Modify State onlyOwner

isContract Internal - -

QsMdxLPDelegate

Function Name Visibility Mutability Modifiers

_becomeImplementation Public Can Modify State -

claimMdx Public Can Modify State -

borrow External Can Modify State -

8

QsMdxLPDelegate

repayBorrow External Can Modify State -

repayBorrowBehalf External Can Modify State -

liquidateBorrow External Can Modify State -

transferTokens Internal Can Modify State -

getCashPrior Internal - -

doTransferIn Internal Can Modify State -

doTransferOut Internal Can Modify State -

seizeInternal Internal Can Modify State -

redeem External Can Modify State -

redeemUnderlying External Can Modify State -

claimAndStakeMdx Internal Can Modify State -

harvestComp Internal Can Modify State -

updateLPSupplyIndex Internal Can Modify State -

updateSupplierIndex Internal Can Modify State -

mdxBalance Internal - -

fTokenBalance Internal - -

compBalance Internal - -

QsMdxLPOracle

Function Name Visibility Mutability Modifiers

9

QsMdxLPOracle

<Constructor> Public Can Modify State -

decimals External - -

description External - -

version External - -

getRoundData Public - -

latestRoundData External - -

getTokenPrice Private - -

setChainlinkSource External Can Modify State onlyOwner

sqrt Internal - -

QsPriceOracleV3

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

getUnderlyingPrice Public - -

setUnderlyingPrice Public Can Modify State onlyPriceAdmin

isValidPrice Public - -

getChainlinkPrice Public - -

setDirectPrice Public Can Modify State onlyPriceAdmin whenNotPaused

setDirectPrice Public Can Modify State onlyPriceAdmin whenNotPaused

setPrice Private Can Modify State onlyPriceAdmin

10

QsPriceOracleV3

setDirectPriceWithForce Public Can Modify State onlyPriceAdmin

assetPrices External - -

getPriceInfo External - -

addPriceAdmin Public Can Modify State onlyGovernance

removePriceAdmin Public Can Modify State onlyGovernance

setPaused Public Can Modify State onlyGovernance

setErrorHappened Public Can Modify State onlyGovernance

transferGovernance Public Can Modify State onlyGovernance

Qstroller

Function Name Visibility Mutability Modifiers

_setQsConfig Public Can Modify State -

_setCompSpeeds Public Can Modify State -

getCompAddress Public - -

calculateSeizeTokenAllocation Public - -

transferComp Internal Can Modify State -

borrowAllowed External Can Modify State -

flashLoanAllowed External - -

getFlashLoanCap External - -

mintAllowed External Can Modify State -

11

Qstroller

updateCompSupplyIndex Internal Can Modify State -

updateCompBorrowIndex Internal Can Modify State -

getHypotheticalAccountLiquidityInternal Internal - -

liquidateBorrowAllowed Public Can Modify State -

seizeAllowed Public Can Modify State -

repayBorrowAllowed Public Can Modify State -

_supportMarket External Can Modify State -

_setPriceOracle External Can Modify State -

SToken

Function Name Visibility Mutability Modifiers

seizeInternal Internal Can Modify State -

isNativeToken Public - -

maxFlashLoan External - -

flashFee External - -

getFlashFeeInternal Internal - -

flashLoan External Can Modify State -

4.3 Vulnerability Summary

[N1] [Suggestion] Native token receiving issue

12

Category: Others

Content

The fallback function is defined in the CEther contract to receive native tokens, but the mintInternal logic is not

actually triggered.

Code location: contracts/compound/CEther.sol

 function () external payable {

 }

Solution

It is recommended to call the mint function for the user in the fallback function.

Status

Confirmed

[N2] [Suggestion] Missing event record

Category: Others

Content

In the QsConfig contract, the owner can modify the compSpeedGuardianPaused parameter through the

_setCompSpeedGuardianPaused function. SafetyGuardian can modify the pendingSafetyGuardian parameter

through the _setPendingSafetyGuardian function. The pendingSafetyGuardian role can receive safetyGuardian

permissions through the _acceptSafetyGuardian function. However, no event recording was made.

Code location: contracts/QsConfig.sol

 function _setCompSpeedGuardianPaused(bool state) public onlyOwner returns (bool)

{

 compSpeedGuardianPaused = state;

 return state;

 }

 function _setPendingSafetyGuardian(address newPendingSafetyGuardian) external {

13

 require(msg.sender == safetyGuardian, "!safetyGuardian");

 pendingSafetyGuardian = newPendingSafetyGuardian;

 }

 function _acceptSafetyGuardian() external {

 require(msg.sender == pendingSafetyGuardian, "!pendingSafetyGuardian");

 safetyGuardian = pendingSafetyGuardian;

 pendingSafetyGuardian = address(0x0);

 }

Solution

It is recommended to record incidents when modifying sensitive parameters for follow-up self-examination or

community review.

Status

Fixed

[N3] [Suggestion] Code redundancy issue

Category: Others

Content

In the QsConfig contract, getFlashFee is used to obtain flashFee, but the token parameter passed in from outside is

not used.

In the SToken contract, the maxFlashLoan function is used to obtain flashLoanCap, but the token parameter passed

in from outside is not used.

Code location:

contracts/QsConfig.sol

 function getFlashFee(address borrower, address token, uint256 amount) external

view returns (uint flashFee) {

 if (whitelist[borrower]) {

 return 0;

 }

14

 Exp memory flashLoanFeeRatioExp = Exp({mantissa:flashLoanFeeRatio});

 (, flashFee) = mulScalarTruncate(flashLoanFeeRatioExp, amount);

 token;

 }

contract/SToken.sol

 function maxFlashLoan(address token) external view returns (uint256) {

 token;

 return Qstroller(address(comptroller)).getFlashLoanCap(address(this));

 }

Solution

It is recommended to remove unused code.

Status

Confirmed

[N4] [Critical] Flashloan issue

Category: Design Logic Audit

Content

The lightning loan function is implemented in the SToken contract. It can directly lend the funds in the cToken, and

obtain the amount of funds in the cToken through the getCashPrior function to check before and after borrowing. If a

malicious user borrows funds through a flash loan and mortgages it to the current cToken contract, the check on

getCashPrior will be bypassed. At this time, the user has returned the flash loan and made a deposit in the

agreement.

Code location: contracts/SToken.sol

 function flashLoan(IERC3156FlashBorrower receiver, address token, uint256 amount,

bytes calldata data) external returns (bool) {

 require(accrueInterest() == uint(Error.NO_ERROR), "Accrue interest failed");

15

 uint cashBefore = getCashPrior();

 require(cashBefore >= amount, "Insufficient liquidity");

 // 1. calculate fee

 uint fee = getFlashFeeInternal(token, amount);

 // 2. transfer fund to receiver

 doTransferOut(address(uint160(address(receiver))), amount);

 // 3. update totalBorrows

 totalBorrows = add_(totalBorrows, amount);

 // 4. execute receiver's callback function

 receiver.onFlashLoan(msg.sender, token, amount, fee, data);

 // 5. check cash balance

 uint cashAfter = getCashPrior();

 require(cashAfter >= add_(cashBefore, fee), "Inconsistent balance");

 (MathError err, uint reservesFee)= mulScalarTruncate(Exp({mantissa:

reserveFactorMantissa}), fee);

 require(err == MathError.NO_ERROR, "Error to calculate flashloan reserve

fee");

 totalReserves = add_(totalReserves, reservesFee);

 totalBorrows = sub_(totalBorrows, amount);

 return true;

 }

Solution

It is recommended to separate the flashloan pool from the cToken pool.

Status

Fixed

[N5] [Suggestion] Potential calculation flaws in flashloan fees

Category: Design Logic Audit

Content

The flash loan function is implemented in the SToken contract, which will obtain the flash loan fee through the

getFlashFeeInternal function according to the token parameters passed in by the user. If the token data passed by

the user is trusted to obtain the cost, then the malicious user can control the passed token parameters to control the

cost to be paid.

16

Code location: contracts/SToken.sol

 function flashLoan(IERC3156FlashBorrower receiver, address token, uint256 amount,

bytes calldata data) external returns (bool) {

 require(accrueInterest() == uint(Error.NO_ERROR), "Accrue interest failed");

 uint cashBefore = getCashPrior();

 require(cashBefore >= amount, "Insufficient liquidity");

 // 1. calculate fee

 uint fee = getFlashFeeInternal(token, amount);

 // 2. transfer fund to receiver

 doTransferOut(address(uint160(address(receiver))), amount);

 // 3. update totalBorrows

 totalBorrows = add_(totalBorrows, amount);

 // 4. execute receiver's callback function

 receiver.onFlashLoan(msg.sender, token, amount, fee, data);

 // 5. check cash balance

 uint cashAfter = getCashPrior();

 require(cashAfter >= add_(cashBefore, fee), "Inconsistent balance");

 (MathError err, uint reservesFee)= mulScalarTruncate(Exp({mantissa:

reserveFactorMantissa}), fee);

 require(err == MathError.NO_ERROR, "Error to calculate flashloan reserve

fee");

 totalReserves = add_(totalReserves, reservesFee);

 totalBorrows = sub_(totalBorrows, amount);

 return true;

 }

Solution

It is recommended that the tokens paid for the fee be consistent with the source of the loaned tokens.

Status

Confirmed

5 Audit Result

17

Audit Number Audit Team Audit Date Audit ResultAudit Number Audit Team Audit Date Audit Result

0X002110260001 SlowMist Security Team 2021.10.15 - 2021.10.26 Passed

Summary conclusion: The SlowMist security team use a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 1 critical risk, 4 suggestion vulnerabilities. And 3 suggestion vulnerabilities

were confirmed and being fixed; All other findings were fixed. The code was not deployed to the mainnet.

18

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based on

the documents and materials provided to SlowMist by the information provider till the date of the insurance report

(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,

deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with

the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only

conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

